Для чего нужен Гидравлический расчет. Постановка задачи
- Для чего нужен Гидравлический расчет. Постановка задачи
- Гидравлический расчет системы отопления онлайн. Калькулятор трубопровода
- Гидравлический расчет газопровода. Гидравлический расчет газопроводов(методика СП 42-101-2003)
- Гидравлический расчет тепловых сетей. 7 Гидравлический расчет тепловых сетей.
- Гидравлический расчет трубопровода калькулятор. Калькулятор гидравлического расчета водопровода
- Для чего нужен Гидравлический расчет трубопровода. Подготовка к расчету и его этапы
- Гидравлический расчет формулы. 1 Гидравлический расчет простых напорных трубопроводов.
- Гидравлический расчет пример. Гидравлический расчет трубопроводов
- Гидравлический расчет водопровода. 2. Гидравлический расчет наружной водопроводной сети.
Для чего нужен Гидравлический расчет. Постановка задачи
Гидравлический расчёт при разработке проекта трубопровода направлен на определение диаметра трубы и падения напора потока носителя. Данный вид расчёта проводится с учетом характеристик конструкционного материала, используемого при изготовлении магистрали, вида и количества элементов, составляющих систему трубопроводов(прямые участки, соединения, переходы, отводы и т. д.), производительности,физических и химических свойств рабочей среды.
Многолетний практический опыт эксплуатации систем трубопроводов показал, что трубы, имеющие круглое сечение, обладают определенными преимуществами перед трубопроводами, имеющими поперечное сечение любой другой геометрической формы:
- минимальное соотношением периметра к площади сечения, т.е. при равной способности, обеспечивать расход носителя, затраты на изолирующие и защитные материалы при изготовлении труб с сечением в виде круга, будут минимальными;
- круглое поперечное сечение наиболее выгодно для перемещения жидкой или газовой среды сточки зрения гидродинамики, достигается минимальное трение носителя о стенки трубы;
- форма сечения в виде круга максимально устойчива к воздействию внешних и внутренних напряжений;
- процесс изготовления труб круглой формы относительно простой и доступный.
Подбор труб по диаметру и материалу проводится на основании заданных конструктивных требований к конкретному технологическому процессу. В настоящее время элементы трубопровода стандартизированы и унифицированы по диаметру. Определяющим параметром при выборе диаметра трубы является допустимое рабочее давление, при котором будет эксплуатироваться данный трубопровод.
Основными параметрами, характеризующими трубопровод являются:
- условный (номинальный) диаметр – DN;
- давление номинальное – PN;
- рабочее допустимое (избыточное) давление;
- материал трубопровода, линейное расширение, тепловое линейное расширение;
- физико-химические свойства рабочей среды;
- комплектация трубопроводной системы (отводы, соединения, элементы компенсации расширения и т.д.);
- изоляционные материалы трубопровода.
Условный диаметр (проход) трубопровода ( DN) – это условная безразмерная величина, характеризующая проходную способность трубы, приблизительно равная ее внутреннему диаметру. Данный параметр учитывается при осуществлении подгонки сопутствующих изделий трубопровода (трубы, отводы, фитинги и др.).
Условный диаметр может иметь значения от 3 до 4000 и обозначается: DN 80 .
Условный проход по числовому определению примерно соответствует реальному диаметру определенных отрезков трубопровода. Численно он выбран таким образом, что пропускная способность трубы повышается на 60-100% при переходе от предыдущего условного прохода к последующему.Номинальный диаметр выбирается по значению внутреннего диаметра трубопровода. Это то значение, которое наиболее близко к реальному диаметру непосредственно трубы.
Давление номинальное (PN) – это безразмерная величина, характеризующая максимальное давление рабочего носителя в трубе заданного диаметра, при котором осуществима длительная эксплуатация трубопровода при температуре 20°C.
Значения номинального давления были установлены на основании продолжительной практики и опыта эксплуатации: от 1 до 6300.
Номинальное давление для трубопровода с заданными характеристиками определяется по ближайшему к реально создаваемому в нем давлению. При этом,вся трубопроводная арматура для данной магистрали должна соответствовать тому же давлению. Расчет толщины стенок трубы проводится с учетом значения номинального давления.
Гидравлический расчет системы отопления онлайн. Калькулятор трубопровода
Наш универсальный онлайн-калькулятор позволяет выполнить полный гидравлический расчет простого трубопровода , то есть определить гидравлическое сопротивление, потери напора по длине по всему участку или на 1 погонный метр, узнать средний расход воды. Расчет выполняется по принципу, описанному в СНиП 2.04.02-84 (СП 31.13330.2012) «Водоснабжение. Наружные сети и сооружения», более подробно с теорией можно ознакомиться ниже. Оптимальная скорость воды в трубе от 0.6 м/с до 1.5 м/с, максимальная – 3 м/с. Обращайте внимание на единицы измерения и материал трубопровода, это важно. Для того чтобы получить результат гидравлического расчета, корректно заполните поля калькулятора и нажмите кнопку «Показать результат».
Наш универсальный онлайн-калькулятор позволяет выполнить полный гидравлический расчет простого трубопровода, то есть определить гидравлическое сопротивление, потери напора по длине по всему участку или на 1 погонный метр, узнать средний расход воды.
Расчет выполняется по принципу, описанному в СНиП 2.04.02-84 (СП 31.13330.2012) «Водоснабжение. Наружные сети и сооружения», более подробно с теорией можно ознакомиться ниже.
Оптимальная скорость воды в трубе от 0.6 м/с до 1.5 м/с, максимальная – 3 м/с. Обращайте внимание на единицы измерения и материал трубопровода, это важно.
Гидравлический расчет газопровода. Гидравлический расчет газопроводов(методика СП 42-101-2003)
На портале можно провести онлайн гидравлический расчет газопроводов в теме «ГИДРАВЛИЧЕСКИЙ РАСЧЕТ ТРУБОПРОВОДОВ (ГАЗОПРОВОДОВ)».
На данной странице изложена методика на основании которой составлен расчет.
Пример гидравлического расчета:
РАСЧЕТ ДИАМЕТРА ГАЗОПРОВОДА И ДОПУСТИМЫХ ПОТЕРЬ ДАВЛЕНИЯ
3.21 Пропускная способность газопроводов может приниматься из условий создания при максимально допустимых потерях давления газа наиболее экономичной и надежной в эксплуатации системы, обеспечивающей устойчивость работы ГРП и газорегуляторных установок (ГРУ), а также работы горелок потребителей в допустимых диапазонах давления газа.
3.22 Расчетные внутренние диаметры газопроводов определяются исходя из условия обеспечения бесперебойного газоснабжения всех потребителей в часы максимального потребления газа.
3.23 Расчет диаметра газопровода следует выполнять, как правило, на компьютере с оптимальным распределением расчетной потери давления между участками сети.
При невозможности или нецелесообразности выполнения расчета на компьютере (отсутствие соответствующей программы, отдельные участки газопроводов и т.п.) гидравлический расчет допускается производить по приведенным ниже формулам или по номограммам (приложение Б), составленным по этим формулам.
3.24 Расчетные потери давления в газопроводах высокого и среднего давления принимаются в пределах категории давления, принятой для газопровода.
3.25 Расчетные суммарные потери давления газа в газопроводах низкого давления (от источника газоснабжения до наиболее удаленного прибора) принимаются не более 180 даПа, в том числе в распределительных газопроводах 200 даПа, в газопроводах-вводах и внутренних газопроводах — 60 даПа.
3.26 Значения расчетной потери давления газа при проектировании газопроводов всех давлений для промышленных, сельскохозяйственных и бытовых предприятий и организаций коммунально-бытового обслуживания принимаются в зависимости от давления газа в месте подключения с учетом технических характеристик принимаемого к установке газового оборудования, устройств автоматики безопасности и автоматики регулирования технологического режима тепловых агрегатов.
3.27 Падение давления на участке газовой сети можно определять:
— для сетей среднего и высокого давлений по формуле
, (3)
где Рн — абсолютное давление в начале газопровода, МПа;
Рк — абсолютное давление в конце газопровода, МПа;
Р 0= 0,101325 МПа;
l — коэффициент гидравлического трения;
l — расчетная длина газопровода постоянного диаметра, м;
d — внутренний диаметр газопровода, см;
r0— плотность газа при нормальных условиях, кг/м3;
Q 0— расход газа, м3/ч, при нормальных условиях;
— для сетей низкого давления по формуле
, (4)
где Рн — давление в начале газопровода, Па;
Рк — давление в конце газопровода, Па;
l, l , d , r0, Q 0— обозначения те же, что и в формуле (3).
3.28 Коэффициент гидравлического трения l определяется в зависимости от режима движения газа по газопроводу, характеризуемого числом Рейнольдса,
, (5)
где v — коэффициент кинематической вязкости газа, м2/с, при нормальных условиях;
Q 0, d — обозначения те же, что и в формуле (3), и гидравлической гладкости внутренней стенки газопровода, определяемой по условию (6),
, (6)
где Re — число Рейнольдса;
(Примечание :в формуле №6 допущена опечатка. Вместо знака равно должен быть знак умножения)
n — эквивалентная абсолютная шероховатость внутренней поверхности стенки трубы, принимаемая равной для новых стальных — 0,01 см, для бывших в эксплуатации стальных — 0,1 см, для полиэтиленовых независимо от времени эксплуатации — 0,0007 см;
d — обозначение то же, что и в формуле (3).
Гидравлический расчет тепловых сетей. 7 Гидравлический расчет тепловых сетей.
Основной задачей гидравлического расчета является определение диаметров трубопроводов, а также потерь давления на участках тепловых сетей. По результатам гидравлических расчетов разрабатывают гидравлические режимы систем теплоснабжения, подбирают сетевые и подпиточные насосы, авторегуляторы, дроссельные устройства, оборудование тепловых пунктов.
При движении теплоносителя по трубам полные потери давления Р складываются из потерь давления на трениеи потерь давления в местных сопротивлениях Р м
(2.51)
Потери давления на трение определяют по формуле
(2.52)
где R - удельные потери давления, Па/м, определяемые по формуле
, (2.53)
где - коэффициент гидравлического трения;
d - внутренний диаметр трубопровода, м;
- плотность теплоносителя, кг/м3;
- скорость движения теплоносителя, м/c;
L - длина трубопровода, м.
Потери давления в местных сопротивлениях Р м определяют по формуле
, (2.54)
где - сумма коэффициентов местных сопротивлений.
Потери давления в местных сопротивлениях могут быть также определены по следующей формуле
где L э- эквивалентная длина местных сопротивлений, которую определяют по формуле
(2.56)
Перед выполнением гидравлического расчета разрабатывают расчетную схему тепловых сетей. На расчетной схеме проставляют номера участков (сначала по главной магистрали, а потом по ответвлениям), расходы теплоносителя в кг/с или в т/ч, длины участков в метрах. Здесь главной магистралью является наиболее протяженная и нагруженная ветвь сети от источника теплоты (точки подключения) до наиболее удаленного потребителя. При неизвестном располагаемом перепаде давления в начале теплотрассы, удельные потери давления R следует принимать:
а) на участках главной магистрали 20 - 40, но не более 80 Па/м;
б) на ответвлениях - по располагаемому перепаду давления, но не более 300 Па/м.
Гидравлический расчет выполняют по таблицам и номограммам, представленным в литературе . Сначала выполняют расчет главной магистрали. По известным расходам, ориентируясь на рекомендованные величины удельных потерь давления R , определяют диаметры трубопроводов d н S ; фактические удельные потери давления R , Па/м; а также скорость движения теплоносителя , м/с. Условный проход труб, независимо от расчетного расхода теплоносителя должен приниматься в тепловых сетях не менее 32 мм. Скорость движения воды не должна быть более 3,5 м/с. Определив диаметры трубопроводов, находят количество компенсаторов на участках и другие виды местных сопротивлений. Потери давления в местных сопротивлениях определяют по формуле (2.54), либо, по формуле (2.55). Затем определяют полные потери давления на участках главной магистрали и суммарные по всей ее длине. Далее выполняют гидравлический расчет ответвлений, увязывая потери давления в них с соответствующими частями главной магистрали (от точки деления потоков до концевых потребителей). Увязку потерь давления следует выполнять подбором диаметров трубопроводов ответвлений. Невязка не должна быть более 10 %. При невозможности полностью увязать диаметрами, излишний напор на ответвлениях должен быть погашен соплами элеваторов, дроссельными диафрагмами и авторегуляторами потребителей.
Гидравлический расчет трубопровода калькулятор. Калькулятор гидравлического расчета водопровода
Теги: Расчет труб
Калькулятор для гидравлического расчета водопроводных труб позволяет вычислить такие параметры как: коэффициент гидравлического сопротивления, потери напора, расход и скорость воды. Для расчетов потребуется указать такие исходные параметры, как диаметр и длина труб, расход воды, материал трубопровода. Основы для вычислений – формулы, приведенные в СНиП 2.04.02-84 (СП 31.13330.2012).Гидравлический расчет простого трубопровода регламентируется СНиП 2.04.02-84 (СП 31.13330.2012) «Водоснабжение. Наружные сети и сооружения».
Для чего нужен Гидравлический расчет трубопровода. Подготовка к расчету и его этапы
Гидравлический расчет отопления позволяет выяснить, какими эксплуатационными параметрами должна обладать СВО при заданных исходных данных, чтобы демонстрировать лучшую эффективность. На данном этапе составления проекта необходимо получить следующие характеристики:
- Диаметр труб (он определяет пропускную способность системы).
- Потери напора и давления. Считаются общие (по всей СВО) потери и отдельно по каждому участку.
- Оптимальный объем воды в контуре, скорость ее движения, вместительность расширительного бака.
- Расчет сопротивления системы, выбор циркуляционного насоса.
Перед тем, как рассчитать гидравлические параметры, необходимо выполнить теплотехнический расчет. Он даст представление о том, сколько тепловой энергии необходимо для каждой комнаты. Это, в свою очередь, позволит выбрать тип отопительной системы, теплогенератор и отопительные приборы.
На основании этих данных выбирают трубы и арматуру, методику, и проводят расчет трубопровода по расходу и давлению. На последнем этапе составляют аксонометрическую схему разводки (визуальную проекцию сетей коммуникаций, выполненную в системе трех координат).
Принципы гидравлического расчета
Тепловой расчет предоставляет следующие данные:
- Для СВО с однотрубным контуром: расход теплоносителя (кг/ч).
- Для СВО с двухтрубным контуром: разность между горячей и охлажденной рабочей жидкостью (в прямой и обратной части).
- Оптимальная скорость движения теплоносителя; она находится в пределах 0,3-0,7 м/с. Если она падает ниже 0,2 м/с, возникает опасность завоздушивания. Скорость связана с внутренним диаметром трубы, это соотношение обратно пропорционально.
Расчет отопления частного дома: что учитывается при расчете, особенности вычетов при помощи онлайн-калькулятора
Для вычисления диаметра труб используют еще одну теплотехническую переменную: скорость теплопотока; она показывает, какое количество тепла передается в единицу времени. В расчетах используют справочные таблицы, в которых прописаны исходные данные. Такие таблицы имеются в специальной литературе, на сайтах производителей труб, в документах СНиП.
Подобная методика, основанная на данных теплотехнического расчета, когда общее значение тепловой мощности распределяется между всеми нагревательными приборами, является идеальным описанием работы системы. На практике скорость теплоносителя и другие переменные всегда будут отличаться от расчетных показателей. Это связано со следующими факторами:
- Существует трение воды о стенки труб.
- Существуют дополнительные сопротивления потоку в местах разветвлений труб и в точках крепления арматуры (кранов, фильтров, клапанов).
Поэтому возникает необходимость определения потери давления в трубопроводе, а также потери скорости на разных участках системы.
Автономная СВО требует полного контроля со стороны владельцев Источник stroyfora.ruЭто наиболее сложная задача, так как ее решение требует расчетов в области гидродинамических сред. Расчеты учитывают следующие параметры:
- Силу трения воды; для этого необходимо учитывать особенности (шероховатость) материала.
- Турбулентные завихрения. На них влияют любые изменения формы канала. В расчеты потери напора в трубопроводе вводятся специальные коэффициенты, которые указываются производителем для каждого изделия, от труб до фильтров.
Цель гидравлического расчета – предварительная балансировка СВО. То есть, важно определить, при каких параметрах пропускной способности распределение тепла по нагревательным приборам будет оптимальным (экономичным и достаточным для сохранения комфортного микроклимата в помещениях). Для балансировки используют регулировочные клапаны.
Система отопления нуждается в балансировке Источник ultra-term.ruКлапаны устанавливаются в точках подключения нагревательных приборов. Изменение их пропускной способности позволяет распределять тепло нужным образом. Необходимо помнить, что изменение пропускной способности одного клапана меняет баланс в остальных контурах, что приводит к необходимости дополнительной калибровки. Свои принципы балансировки существуют для каждого типа разводки.
Все о балансировке системы отопления Автоматизация процесса
Расчет давления в трубопроводе можно провести при помощи онлайн калькуляторов, предлагающих гидравлический расчет системы. Можно получить такие характеристики, как расход воды (пропускную способность), параметры труб (внутренний диаметр), а также потери давления в трубопроводе; калькулятор при этом позволяет выбрать способ расчета сопротивления.
Гидравлический расчет формулы. 1 Гидравлический расчет простых напорных трубопроводов.
При гидравлическом расчете трубопровода обычно решаются три задачи:
- определение диаметра или
- начального давления P1, или
- пропускной способности Q.
Основные уравнения гидродинамики:
1. Объемный расход:
(4.1)
где ω – линейная скорость, м/с;
S – площадь поперечного сечения трубы, м2.
2. Массовый расход:
(4.2)
Для трубопроводов круглого сечения, так какформула (4.1) примет вид
(4.3)
3. Уравнение неразрывности: в любой точке трубопровода массовый расход должен быть постоянным – частный случай выражения закона сохранения вещества:
(4.4)
(4.5)
то есть это уравнение материального баланса потока.
4. За основу гидравлических расчетов трубопроводов принимается уравнение Бернулли, частный случай выражения закона сохранения энергии, которое для идеальной жидкости имеет вид:
(4.6)
ρ - плотность, кг/м3;
Каждый член уравнения (4.6) имеет размерность высоты и носит соответствующее название:
Zi - определяет высоту положения различных точек линии тока над плоскостью сравнения, геометрический напор; удельная потенциальная энергия положения.
, м - называется пьезометрический напор или статический напор; удельная потенциальная энергия давления.
, м - называется динамический или скоростной напор, или удельная кинетическая энергия.
Сумма всех трех напоров определяет запас полной механической энергии потока в соответствующем сечении, отнесенной к единице силы тяжести, и называется полным напором H:
(4.7)
Реальная жидкость обладает вязкостью. В уравнении Бернулли появляется слагаемое, учитывающее потери энергии вследствие гидравлических сопротивлений на участке 1-2:
(4.8)
где h П – напор на преодоление путевых сопротивлений, то есть на преодоление сил трения и местных сопротивлений трубопроводов.
Гидравлический расчет пример. Гидравлический расчет трубопроводов
Системы отопления зданий, теплотрассы, водопроводы, системы водоотведения, гидравлические схемы станков, машин – все это примеры систем, состоящих из трубопроводов. Гидравлический расчет трубопроводов — особенно сложных, разветвленных…
… — является очень непростой и громоздкой задачей. Сегодня в век компьютеров решать ее стало существенно легче при использовании специального программного обеспечения. Но хорошие специальные программы дорого стоят и есть они, как правило, только у специалистов-гидравликов.
В этой статье мы рассмотрим гидравлический расчет трубопроводов на примере расчета в Excel горизонтального участка трубопровода постоянного диаметра по двум методикам и сравним полученные результаты. Для «неспециалистов» применение представленной ниже программы позволит решить несложные «житейские» и производственные задачи. Для специалистов применение этих расчетов возможно в качестве проверочных или для выполнения быстрых простых оценок.
Как правило, гидравлический расчет трубопроводов включает в себя решение двух задач:
1. При проектировочном расчете требуется по известному расходу жидкости найти потери давления на рассматриваемом участке трубопровода. (Потери давления – это разность давлений между точкой входа и точкой выхода.)
2. При проверочном расчете (при аудите действующих систем) требуется по известному перепаду давления (разность показаний манометров на входе в трубопровод и на выходе) рассчитать расход жидкости, проходящей через трубопровод.
Приступаем к решению первой задачи. Решить вторую задачу вы сможете легко сами, используя сервис программы MS Excel «Подбор параметра». О том, как использовать этот сервис, подробно описано во второй половине статьи « Трансцендентные уравнения? «Подбор параметра» в Excel! ».
Предложенные далее расчеты в Excel, можно выполнить также в программе OOo Calc из свободно распространяемого пакета Open Office.
Правила цветового форматирования ячеек листа Excel, которые применены в статьях этого блога, детально описаны на странице « О блоге » .
Расчет в Excel трубопроводов по формулам теоретической гидравлики.
Рассмотрим порядок и формулы расчета в Excel на примере прямого горизонтального трубопровода длиной 100 метров из трубы ø108 мм с толщиной стенки 4 мм.
Исходные данные:
1. Расход воды через трубопровод G в т/час вводим
в ячейку D4: 45,000
в ячейку D5: 95,0
в ячейку D6: 70,0
в ячейку D7: 100,0
в ячейку D8: 100,000
6. Эквивалентную шероховатость внутренних поверхностей труб ∆ в мм вносим
в ячейку D9: 1,000
Выбранное значение эквивалентной шероховатости соответствует стальным старым заржавевшим трубам, находящимся в эксплуатации много лет.
Эквивалентные шероховатости для других типов и состояний труб приведены на листе «Справка» расчетного файла Excel «gidravlicheskiy-raschet-truboprovod ov .xls», ссылка на скачивание которого дана в конце статьи.
7. Сумму коэффициентов местных сопротивлений Σ(ξ) вписываем
в ячейку D10: 1 , 89
Мы рассматриваем пример, в котором местные сопротивления присутствуют в виде стыковых сварных швов (9 труб, 8 стыков).
Для ряда основных типов местных сопротивлений данные и формулы расчета представлены на листах «Расчет коэффициентов» и «Справка» файла Excel «gidravlicheskiy-raschet-truboprovod ov .xls».
Гидравлический расчет водопровода. 2. Гидравлический расчет наружной водопроводной сети.
Гидравлический расчет наружной водопроводной сети, как и определение расчетных расходов воды, производится для двух периодов (до пожара и при пожаре).
Для первого периода необходимо:
определить расходы воды на участках сети;
выбрать диаметры труб на участках сети;
определить потери напора в сети;
проверить выбранные диаметры труб на пропуск воды, не допуская увеличения скорости движения выше 2,5м/с.
Для второго периода необходимо:
определить расходы воды на участках сети;
определить потери напора в сети;
проверить выбранные диаметры труб на пропуск воды, не допуская увеличения скорости движения выше 2,5м/с.
2.2.2.1. Гидравлический расчет наружной водопроводной
сети в первый период
Для гидравлического расчета наружной водопроводной сети в первый период составляется расчетная схема отбора воды из наружной сети, изображенная на рисунке 1.
Рисунок 1 - Схема отбора воды из наружной сети в первый период
На схему из графы 15 таблицы 2 заносятся расходы воды в каждом здании и на всем предприятии в соответствии с расположением производственных зданий на генеральном плане. Qрасч.- сумма расходов воды для всех зданий предприятия "до пожара". Точки 1,2,3,4,5,6 – узловые точки отбора воды.
Из точки 1 вода движется в двух направлениях. Место, где встречаются потоки воды, называется диктующей точкой. В нашем случае это точка 4. Таким образом водопроводная сеть состоит из двух полуколец:
I полукольцо: 1 – 2 – 3 – 4;
II полукольцо: 1 – 6 – 5 – 4.
Гидравлический расчет наружной водопроводной сети начинается с определения расходов воды на участках I полукольца.
Расход воды в диктующей точке 4 осуществляется за счет двух одинаковых потоков q4-3и q4-5.Поэтому расход воды на участках qи qодинаков и равен половине расхода воды в здании № 2.