Алюминиевые батареи

Как выбрать алюминиевые радиаторы отопления

Расход воды в системе отопления. Количество теплоносителя в системе отопления

01.06.2023 в 01:44
Содержание
  1. Расход воды в системе отопления. Количество теплоносителя в системе отопления
  2. Расчет расхода теплоносителя в системе отопления. Определение расхода теплоносителя и диаметров труб
  3. Расход воды в системе отопления онлайн. Калькулятор объема воды в системе отопления
  4. Расход теплоносителя формула. Расчет расхода холодоносителя
  5. Расход теплоносителя калькулятор. Расчет мощности водяного калорифера приточной вентиляции онлайн
  6. Расход теплоносителя в системе отопления многоквартирного дома. Как выбрать циркуляционный насос
  7. Объем системы отопления по нагрузке. В каких случаях производят расчет тепловой нагрузки
  8. Расход воды через радиатор отопления. Расчет радиаторов отопления

Расход воды в системе отопления. Количество теплоносителя в системе отопления

Теплоноситель нужен после монтажа новой отопительной системы, после её ремонта или реконструкции.

Перед заполнением отопительной системы требуется определить точное количество теплоносителя, для того чтобы заранее купить или подготовить необходимый объём. Нужно собрать информацию про паспортный объем всех отопительных приборов и трубопроводов (детальнее: «Расчет объема системы отопления, включая радиаторы «). Обычно такие данные содержатся на упаковке или в справочной литературе. Объём труб легко высчитывается по их длине и известному сечению.
Для наиболее распространённых элементов теплосетей объёмы теплоносителя таковы:

  • Секция современного радиатора (алюминиевого, стального или биметаллического) — 0,45 литра
  • Секция радиатора старого типа (чугунного, МС 140-500, ГОСТ 8690-94) – 1.45 литра
  • Погонный метр трубы (15 миллиметров внутренний диаметр) — 0,177 литра
  • Погонный метр трубы (32 миллиметров внутренний диаметр) — 0,8 литра

Расход теплоносителя в системе отопления можно примерно подсчитать и без суммирования. Можно просто исходить из мощности отопительной системы. Для расчёта используют соотношение, что отопительной системе для передачи одного килоВатта тепла понадобится 15 литров неплоносителя. Нетрудно подсчитать, что для отопительной системы мощностью 75 килоВатт понадобится 75х15=1125 литров теплоносителя. Ещё раз – этот метод приблизительный и не даёт точного объёма. Читайте также: «Как рассчитать систему отопления «.

Нам недостаточно подсчитать расход теплоносителя – формула для вычисления объёма расширительного бака также совершенно необходима.
Мало просто просуммировать объёмы составляющих теплосети (радиаторов, котла и трубопроводов). Дело в том, что в процессе нагревания исходной объём жидкости существенно изменяется, а следовательно возрастает давление. Для того, чтобы его скомпенсировать, применяют так называемые расширительные баки.

Их объём вычисляется с использованием следующих показателей и коэффициентов:

Е — так называемый коэффициент расширения жидкости (исчисляется в процентах). Для разных теплоносителей он разный. Для воды он составляет 4%, для антифриза на базе этиленгликоля — 4,4 %.

d — коэффициент эффективности расширительного бака
VS – расчетный расход теплоносителя (просуммированный объём всех составляющих системы теплоснабжения)
V – результат вычисления. Объём расширительного бака.

Формула для расчета — V = (VS x E)/d

Расчет теплоносителя в системе отопления выполнен – пора заливать!

Существуют два варианта заполнения системы, в зависимости от её конструкции:

  • Заливка «самотёком» — в высшей точке системы в отверстие вставляется воронка, через которую постепенно заливается теплоноситель. Нужно не забыть в нижней точке системы открыть кран и подставить какую-то ёмкость.
  • Принудительная закачка с помощью насоса . Подойдет практически любой электрический насос малой мощности. В процессе заполнения следует контролировать показания манометра, дабы не переборщить с давлением. Очень желательно не забыть открыть воздушные клапаны на батареях.

Расчет расхода теплоносителя в системе отопления. Определение расхода теплоносителя и диаметров труб

Вначале каждую отопительную ветвь надо разбить на участки, начиная с самого конца. Разбивка делается по расходу воды, а он изменяется от радиатора к радиатору. Значит, после каждой батареи начинается новый участок, это показано на примере, что представлен выше. Начинаем с 1-го участка и находим в нем массовый расход теплоносителя, ориентируясь на мощность последнего отопительного прибора:

G = 860q/ ∆t, где:

  • G – расход теплоносителя, кг/ч;
  • q – тепловая мощность радиатора на участке, кВт;
  • Δt– разница температур в подающем и обратном трубопроводе, обычно берут 20 ºС.

Для первого участка расчет теплоносителя выглядит так:

860 х 2 / 20 = 86 кг/ч.

Полученный результат надо сразу нанести на схему, но для дальнейших расчетов он нам понадобится в других единицах – литрах в секунду. Чтобы сделать перевод, надо воспользоваться формулой:

GV = G /3600ρ, где:

  • GV – объемный расход воды, л/сек;
  • ρ– плотность воды, при температуре 60 ºС равна 0.983 кг / литр.

Расход воды в системе отопления. Количество теплоносителя в системе отопления

Расход воды в системе отопления онлайн. Калькулятор объема воды в системе отопления

Чтобы узнать необходимый объем у системы отопления при определённой мощности отопительного котла, используйте калькулятор объема воды в системе отопления .

Данный онлайн калькулятор быстро рассчитает максимальный объем системы отопления дома . Если таких расчетов не сделать, то это может привести к недостаточному прогреву помещения, неэффективной работе всей системы отопления и соответственно к лишним финансовым затратам.

Выберите вид радиаторов

Объём системы отопления, л.

Полезные формулы и данные для расчета систем отопления:

Формула для расчета объема жидкости в трубе:

V (объем) = S (площадь сечения трубы) * L (длина трубы)

Объём воды в системе можно рассматривать как сумму её составляющих:

V (системы отопления) = V (радиаторов) + V (труб) + V (котла) + V (расширительного бака)

Объёмы различных элементов системы отопления:

Объем воды в радиаторе (в литрах):

  • алюминиевый радиатор — 1 секция — 0,450 л.
  • биметаллический радиатор — 1 секция — 0,250 л.
  • новая чугунная батарея 1 секция — 1,000 л.
  • старая чугунная батарея 1 секция — 1,700 л.

Объем воды в 1 м.п. трубы (в литрах):

  • ø15 мм (G ½») — 0,177 л.
  • ø20 мм (G ¾») — 0,310 л.
  • ø25 мм (G 1,0″) — 0,490 л.
  • ø32 мм (G 1¼») — 0,800 л.
  • ø15 мм (G 1½») — 1,250 л.
  • ø15 мм (G 2,0″) — 1,960 л.

Если наш онлайн-калькулятор был Вам полезен, или Вы считаете что здесь есть что дополнить или изменить, то ниже оставьте пожалуйста свой отзыв.

Источник: https://alyuminievye-batarei.aystroika.info/novosti/rashod-vody-na-otoplenie-osobennosti-raschetov-dlya-mnogokvartirnogo-doma

Расход теплоносителя формула. Расчет расхода холодоносителя

Расчет расхода холодо- или теплоносителя – одна из задач, с которой сталкиваются инженеры в ходе проектирования и наладки систем холодоснабжения. Например, если известна холодопроизводительность, то часто требуется определить расход жидкости в системе. И наоборот, если на схеме указан расход холодоносителя, нужно определить, какую холодильную мощность он обеспечит.

Расчет расхода холодоносителя в системе онлайн

Для расчета расхода холодоносителя онлайн воспользуйтесь калькулятором ниже. В качестве исходных данных должна быть указана холодильная мощность системы и параметры холодоносителя.

Если же известен расход холодоносителя и его параметры, программа определит холодопроизводительность системы.

Расчет расхода холодоносителя в системе онлайн
кВт
кг/м3
кДж/(кг·°C)
°C
°C
Результаты расчета
м3
л/с
кг/с
кг/ч
Расчет холодильной/тепловой мощности блока по расходу онлайн
кг/м3
кДж/(кг·°C)
°C
°C
Результаты расчета
Холодильная/тепловая мощность кВт
Ссылка на этот расчет:

Для удобства пользователей онлайн-калькулятор сразу выдает расход в м3/с, м3/ч, л/с, кг/с и кг/ч.

Как определить расход холодоносителя в системе холодоснабжения

Базовая формула, на основе которой выполняются вычисления, имеет следующий вид:

Q = c · m · dT , где

  • Q – количество теплоты
  • с – теплоемкость теплоносителя
  • m – масса теплоносителя
  • dT – изменение температуры теплоносителя (разница температур между прямым и обратным потоками)

Данная формула статична: в ней нет такого параметра, как время. Поэтому, например, в ней фигурирует масса теплоносителя, а не его расход. Чтобы придать динамики, нужно обе части уравнения разделить на время. Тогда слева от знака равенства будет мощность, а справа вместо массы – расход теплоносителя. Получим:

  • M = QХ/ (с · dT) – для массового расхода (кг/с)

Важный момент – не запутаться в размерностях. В первую очередь это касается расхода. Чтобы получить расход в м3/с, надо расход в м3/ч разделить на 3600, а расход в л/с разделить на 1000. Если мощность измеряется в Вт, то теплоемкость следует брать в Дж/(кг·°С), если в кВт, то в кДж/(кг·°С).

Упрощенные формулы для расхода теплоносителя в типовых случаях

Полученные формулы могут быть упрощены, если известен тип теплоносителя и разность температур. Так, в подавляющем большинстве систем холодоснабжения применяется чистая вода (ρ = 1000 кг/м3; с = 4.2 кДж/(кг·°С)) или 40% раствор этиленгликоля в воде (ρ = 1070 кг/м3; с = 3.5 кДж/(кг·°С)), а перепад температур составляет dT = 5°С.

Подставив указанные численные значения, получим для чистой воды:

  • Mвода= QХ / 21 – массовый расход для чистой воды (кг/с)

    Для быстрого укрупненного расчета можно принять единую формулу и для воды, и для гликоля: G = QХ/ 20 или QХ· 5 / 100 (умножить на 5 и отнять два нуля).

    Например, при QХ= 200 кВт получим точный расход воды G = 200/21 = 9,5л/с и расход гликоля 10,7л/с, а укрупненная формула даст результат 200/20 = 10л/с.

    И наоборот, если на схеме указан расход по воде G = 17.5л/с при dT = 5°С, то для определения холодильной мощности блока нужно умножить этот расход на 20: QХ= 17.5 · 20 = 350кВт (точное значение 367кВт).

    Источник: https://alyuminievye-batarei.aystroika.info/stati/podrobno-pro-rashod-vody-v-sisteme-otopleniya-temperaturnyy-grafik-sistemy-otopleniya-poryadok

    Расход теплоносителя калькулятор. Расчет мощности водяного калорифера приточной вентиляции онлайн

    • * Расчет расхода тепла калорифером или его мощность в кВт осуществляется онлайн калькулятором по формуле:
    • Q = L ∙ ρ ∙ c ∙ (tн– tп)
    • где:
    • L - расход воздуха - производительность приточной, либо приточно-вытяжной вентиляционной установки, м3
    • ρ - плотность в-ха - для расчетов принимается плотность при температуре +15С на уровне моря = 1,23 кг/м3
    • c - удельная теплоемкость в-ха, 1 кДж/(кг∙°С)
    • tн- температура наружного в-ха - т-ра наиболее холодной пятидневки обеспеченностью 0,92. Берется из СП 131.13330.2018 Строительная климатология, Таблица 3.1, графа 5.
    • tп- т-ра приточного в-ха после нагревателя системы вентиляции.
    • ** Если требуется рассчитать онлайн, до скольки градусов калорифер нагреет воздух в системе вентиляции, то калькулятор делает это так:
    • tп= Q / (L ∙ ρ ∙ c) + tн
    • *** Онлайн расчет расхода теплоносителя (воды) делается калькулятором по формуле:
    • G = 3600 ∙ Q / (св∙ (Tвх- Tвых))
    • где:
    • св- удельная массовая теплоемкость воды, 4,19 кДж/(кг∙°С)
    • Tвх- т-ра греющей воды на входе, °С
    • Tвых- т-ра обратной воды на входе, °С
    • **** Значение скорости в-ха в прямоугольном сечении водяного нагревателя и других элементов вентиляции рекомендиется расчитывать в диапазоне 2,5-3,0 м/с . Если она будет выше, то это приведет к увеличнию аэродинамического сопротивления и снижению эффективности работы калорифера.
    • Формула для онлайн расчета скорости на калькуляторе выглядит так:
    • v = L ∙ 1000 / (3,6 ∙ ш ∙ в)
    • где:
    • L - расход в-ха приточной установки, м3
    • ш - ширина сечения кал-ра, мм
    • в - высота сечения кал-ра, мм
    • ***** Диаметр труб, соединяющих водяной калорифер с источником тепла (котлом или центральным теплоснабжением) подбирается по скорости теплоносителя. Согласно рекомендации СНиП 2.04.05-91 (Отопление, вентиляция и кондиционирование), эта скорость, должна быть в диапазоне от 0,25 до 1,5 м/с . Если она больше, то в трубах может возникать шум, а если меньше - воздушные пробки.

    Расход теплоносителя в системе отопления многоквартирного дома. Как выбрать циркуляционный насос

    Уютным жильё не назовёшь, если в нём будет холодно. И не важно, какая в доме мебель, отделка или внешний вид в целом. Всё начинается с тепла, а оно невозможно без создания системы отопления.

    Недостаточно купить «навороченный» нагревательный агрегат и современные дорогие радиаторы — для начала нужно продумать и распланировать по деталям систему, которая будет поддерживать в помещении оптимальный температурный режим. И не важно, относится ли это к дому, где постоянно живут люди, или это большой загородный дом, маленькая дача. Без тепла жилым помещение не будет и находиться в нём будет не комфортно.

    Для достижения хорошего результата нужно понимать, что и как делать, какие имеются нюансы в отопительной системе, и как они повлияют на качество обогрева.

    Расход воды в системе отопления. Количество теплоносителя в системе отопления 01

    Когда делают монтаж индивидуальной системы отопления, нужно предусматривать все возможные детали её работы. Она должна выглядеть как единый сбалансированный организм, требующий минимума вмешательства со стороны человека. Мелких деталей тут нет – важным является параметр каждого устройства. Это может быть мощность котла или диаметр и тип трубопровода, вид и схема подключений отопительных приборов.

    Без циркуляционного насоса сегодня не обходится ни одна современная отопительная система.

    Два параметра, по которым выбирают этот прибор:

    • Q — показатель расхода теплоносителя за 60 минут, выраженный в кубометрах.
    • Н — показатель напора, который выражен в метрах.

    Многие технические статьи и нормативные документы, а так же производители прибора пользуются обозначением Q.

    Расход воды в системе отопления. Количество теплоносителя в системе отопления 02

    Заводы-изготовители, которые производят запорную арматуру, обозначают расход воды в системе отопления буквой G. Это создаёт небольшие сложности при расчётах, если не учитывать такие расхождения в технических документах. В данной статье будет применяться буква Q.

    Объем системы отопления по нагрузке. В каких случаях производят расчет тепловой нагрузки

    • для оптимизации расходов на отопление;
    • для сокращения расчетной тепловой нагрузки;
    • в том случае если изменился состав теплопотребляющего оборудования (отопительные приборы, системы вентиляции и т.п.);
    • для подтверждения расчетного лимита по потребляемой теплоэнергии;
    • в случае проектирования собственной системы отопления или пункта теплоснабжения;
    • если есть субабоненты, потребляющие тепловую энергию, для правильного ее распределения;
    • В случае подключения к отопительной системе новых зданий, сооружений, производственных комплексов;
    • для пересмотра или заключения нового договора с организацией, поставляющей тепловую энергию;
    • если организация получила уведомление, в котором требуется уточнить тепловые нагрузки в нежилых помещениях;
    • если организация нее имеет возможности установить приборы учета теплоэнергии;
    • в случае увеличения потребления теплоэнергии по непонятным причинам.

    На каком основании может производиться перерасчет тепловой нагрузки на отопление здания

    Приказ Министерства Регионального Развития № 610 от 28.12.2009 "Об утверждении правил установления и изменения (пересмотра) тепловых нагрузок"  ( Скачать ) закрепляет право потребителей теплоэнергии производить расчет и перерасчет тепловых нагрузок. Так же такой пункт обычно присутствует в каждом договоре с теплоснабжающей организацией. Если такого пункта нет, обсудите с вашими юристами вопрос его внесения в договор.

    Но для пересмотра договорных величин потребляемой тепловой энергии должен быть предоставлен технический отчет с расчетом новых тепловых нагрузок на отопление здания, в котором должны быть приведены обоснования снижения потребления тепла. Кроме того, перерасчет тепловых нагрузок производиться после таких мероприятий как:

    • капитальный ремонт здания;
    • реконструкция внутренних инженерных сетей;
    • повышение тепловой защиты объекта;
    • другие энергосберегающие мероприятия.

    Расход воды через радиатор отопления. Расчет радиаторов отопления

    «У вас  теплые батареи?» или «У вас горячие радиаторы отопления?» — такие вопросы мы задаем соседям, если у нас прохладно в квартире, в кабинете, в производственном помещении. Все разнообразные приборы отопления в народе, обычно, называют батареями или радиаторами отопления.

    Под эти термины попадают панельные и секционные радиаторы, ребристые трубы, регистры из гладких труб, разнообразные конвекторы и даже иногда относительно экзотические потолочные излучатели.

    В статье, которую вы читаете, будет представлена небольшая программа в MS Excel, позволяющая выполнить тепловой расчет радиаторов отопления и конвекторов.

    Расход воды через радиатор отопления. Расчет радиаторов отопленияРадиатор отопления – это прибор, который нагревает воздух и предметы в помещении посредством радиационного излучения и конвективного теплообмена, передавая при этом тепловую энергию от горячего теплоносителя (чаще всего от воды) через свои стенки.

    Расход воды через радиатор отопления. Расчет радиаторов отопленияКонвектор передает тепловую энергию в окружающее  его пространство исключительно (на 95%) путем конвективного теплообмена – нагрева горячими стенками воздушных струй.

    Доля тепла, передаваемая конвекцией (оставшаяся часть, соответственно, — инфракрасным излучением) для некоторых типов приборов отопления приведена ниже:

    Чугунные радиаторы (батареи) – 25…35%

    Алюминиевые секционные радиаторы – 50…60%

    Панельные стальные радиаторы – 65…75%

    Конвекторы – 90…98%

    Какой тип приборов отопления лучше однозначно сказать нельзя. У всех есть недостатки. Однако возросшее качество проектирования и изготовления конвекторов позволяет этому типу приборов в последнее время постоянно увеличивать свою долю рынка.

    За последние лет пять мне довелось участвовать в выборе и проектировании систем отопления для большого торгового комплекса (4 этажа, более 30 тысяч квадратных метров) и для производственного цеха (500 квадратных метров). И там и там, в качестве приборов отопления по критерию «цена / качество / эффективность» были применены конвекторы, которые существенно «переиграли» конкурентные варианты (в том числе и вариант воздушного отопления). Практика последующей эксплуатации подтвердила правильность выбранного решения – конвекторы прекрасно отапливают объекты!

    Как и большинство расчетов в теплотехнике предлагаемый расчет радиаторов отопления будет приблизительным. «Приблизительность» заключается в том, что на фактическую теплоотдачу приборов влияют десяток факторов, часть из которых в «точных» расчетах учитываются коэффициентами, определенными в практических опытах, а часть факторов из-за малой значимости и вовсе игнорируются.

    Предложенный ниже расчет радиаторов отопления учитывает 90…95% факторов при выполнении ряда условий:

    1. Атмосферное давление в месте эксплуатации приборов должно быть около 760 миллиметров ртутного столба. Для высокогорных местностей необходимо вводить дополнительную поправку при «точных» расчетах.

    2. Подача воды в прибор не должна быть «снизу – вверх»! Подача может быть любой, предпочтительнее — «сверху – вниз». В противном случае около 15…20% тепла не дополучите.

    3. Монтаж радиатора должен обеспечивать свободное движение воздуха вдоль его поверхностей в вертикальном направлении. Расстояние от пола до низа прибора и от верха прибора до подоконника или верха установочной ниши стены желательно должны быть не менее 100 миллиметров.

    Предлагаемый далее расчет в Excel, можно выполнить и в программе OOo Calc из пакета Open Office.

    О цветах ячеек листа Excel, которые применены в статьях этого блога, следует прочесть на странице   « О блоге ».

    Расчет радиаторов отопления и конвекторов в Excel.

    Исходные данные:

    1.  Тип выбранного отопительного прибора записываем

    в объединенные ячейки C3D3E3:  Радиатор МС-140-108

    в ячейку D4:  10

    Следующие 5 параметров берем из технических характеристик завода изготовителя приборов.

    в ячейку D5:  185

    4.  Номинальный температурный напор прибора (секции) dtн в °C заносим

    в ячейку D6:  70

    в ячейку D7:  360

    в ячейку D8:  0,30

    в ячейку D9:  0,02

    Следующие 3 параметра задаем исходя из предполагаемой реальности последующей эксплуатации . Они зависят от источника теплоснабжения и типа помещения.

    Источник: https://alyuminievye-batarei.aystroika.info/novosti/rashod-vody-na-otoplenie-osobennosti-raschetov-dlya-mnogokvartirnogo-doma